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SUMMARY

OBJECTIVE

The objective of this report is to present a general algorithm for performing data association or
"correlation" for pairs of cumulative track data sets. Here, each pair represents potentially the same target
or platform of interest; and the algorithm is required to (1) operate on both linguistic and stochastic
information and (2) be feasible to implement. This means that in addition to the now well-established use
of solely probabilistic information-usually in the form of geolocation and/or onboard radar
information-linguistic or subjective attribute information is also to be used-such as in narrative
descriptions of the form "appears to be a type x ship flying a dark flag and quite long (over 800 feet or
so?), according to our intelligence reports."

A previous attempt in the same direction -though apparently reasonably successful as demonstrated
through practical numerical experiments-indeed had the drawback of being replete with ad hoc
components, The resulting algorithm, dubbed "PACT" (Possibilistic Approach to Correlation and
Tracking), is fully documented in reference 1. The approach taken here, though preserving the main
structure of PACT, aims at reducing its empirical and ad hoc aspects, as well as its relatively long running
times.

RESULTS

A detailed presentation of the derivation and basic properties of the revised algorithms is given in this
report, followed by tables and flowcharts that explicitly exhibit how to implement the algorithms.
Unfortunately, at the time of the original writing of this report, only preliminary numerical verifications
were carried out. Apropos to the task of final implementation, a group of four individuals was organized,
lead by G. F. Kramer, Senior Analyst; and also comprised of this author; Dr. P. G. Calabrese, Senior
National Research Council Fellow at NRaD; and Dr. C. J. Funk, Senior Analyst, Code 422. In turn, this
has resulted in the NRaD Independent Exploratory Development supported TR, Application of the PACT
Algorithm to Undersea Surveillance Data Fusion.

In conclusion, the structure of PACT has been modified to place it on a firmer mathematical basis. In
addition, a new alternate, simplified approximation version has been obtained that appears promising in
reducing the relatively long running time of the previous version of PACT (reference 1).

RECOMMENDATIONS

Further extensive numerical testing of these new versions of PACT should be performed to
demonstrate both their eventual real-world feasibility and improvement upon the traditional use of only
probabilistic information.
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1. INTRODUCTION

For completeness, the basic problem of multitarget correlation and an outline of the PACT algorithms
approach to this are presented here. For further details concerning the structure of the original PACT
algorithm, its implementation, and numerical experiments and simulations involving PACT, see refer-
ence 1.

The typical correlation problem involves, say, n(> 2) track histories that have not yet been equated;
i.e., decided which truly represent distinct targets of interest or which actually represent the same target or
targets of noninterest. The latter includes false alarms, whales, noncombatants, etc. Call each such track
history trkt, t = 1 .. , n, which consists of one or more pieces of observed or reported data that is assumed
to be categorized by four indices: I referring to the parent track trk,, itself; T, for time; S, for source,
such as specific electronic sensor system or human intelligence sources; and A for attribute or type of data.
The latter can refer to stochastically oriented attributes, including: Az-geolocation, such as two-
dimensional positions and velocity, as well as estimated covariance matrices or ellipses of errors associated
with them; A2--characteristics of parameters of onboard target radar systems such as pulse repetition
interval (PRI), scan rate, and type of system; and A3--characteristics of some particular nonradar sensor
system onboard the target that is reasonably described in a probabilistic manner, among others. On the
other hand, index A for data can also refer to linguistically based or subjective data, where the associated
numerical descriptors are possibility or fuzzy-set membership functions. Examples of this can include the
following: A4-subjective classification, where the boundaries of the different classes are unclear and/or
many overlaps can occur; As-narrative descriptions in natural language of target maneuvers or paths; and
A6-narratives of target characteristics, such as color of the flag. shape of ship, length; and so on.

Before further expounding upon, and analyzing fuzzy-set membership functions and their connections
with probability, let us return to the main statement of the problem. Summarizing the basic situation, the
following diagram (table 1-1) presents the scheme of information received.

Table 1-1. Scheme of information for various track histories.

trk, trk2 . . trk,1

consists of data, consists of data, consists of data,
each typically each typically each typically
written as written as written as

YA,S,T,i YA.S.T.2 YAS.T.n

where A, S, T where A, S, T where A, S, T
run over run over run over
appropriate appropriate appropriate
values relevant values relevant values relevant
to track, to track 2  trackn

A = Attribute, S = Source, T = Time

Next, taking a simplified approach to correlation through sequential paired comparisons (but, see
reference 2, page 13), for comments orn the potential loss of accuracy by using this approach), consider
each possible distinct pair, say (trkt,, trk,1 ), for 1 < f' < < n, yielding a total of ( 2) (-n-- '1 ucn pairs.
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Without loss of generality, denote irk,, as simply irk, and irk,2 as trk2 , but keeping in mind the actual
track numbers of subsequent processing. In addition, for completeness, from now on, for each fixed
index A and t, replace

data set fortrk, = (YATt : (A,S,7) runs over the possible combination of values for irk,) (1.1)

by the single updated best possible value updated data set for irk,: {YA.To.t} ,

where To refers to the present time as a reference. When A = A, , typically a Kalman filter or linear
regression estimator can be used to produce YA,Tot. Similarly, for other stochastic attributes such as A2 ,
A3 , here. When A is a linguistic-based attribute, the process of single data replacement-updating can be
more complicated (or even simpler), depending upon the specific attribute in question. One could use a
time gate or majority filtering technique or some transition Markov-like matrix approach in that case for
the updating. For example,

YA6,T_3 ,3 = brown (flag color),

YA6 ,T_2 ,3 = black,1 (1.2)

YA 6,T- 1 ,3 = brown,

may simply distill to

YA6,3 = brown, (1.3)

omitting the present time index To.

In any case, a typical tableau of comparisons is shown in table 1-2.

Table 1-2. Tableau of data comparisons for a pair of typical track histories.

Attribute A YAi, 1 for trk1 : YAi. 2 for trk2 :

A1  Mean Pos: 14"5'W, long Mean Pos: 14'4'W, long
80 2'N lat 80 4'N, lat

90% conf. ellipse: 90% conf. ellipse:
semimajor axis lngth: 0.3 nm semimajor axis lngth: 0.5 nm
semiminor axis lngth: 0.5 nm semiminor axis lngth: 0.8 nm
Angle of inclination: 160 Angle of inclination: -431

A4  A-Il class A-Ill class

A6  brown flag dark brown flag

A7 rather long (over 800 feet) longish (over 500 feet)
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In addition to the paired comparison of information, as presented typically in table 1-2, one must
consider the relative errors or reliability of the data so that observed/reputed/predicted YAO can be
compared numerically with any potential true value, say ZA,.,, , I = 1, 2 , i = 1, 2. 3. .. , m, Furthermore, the

relative weight of importance assigned to each attribute in the comparison process should also be

ascertained in some sense. For example, how much more or less important is geolocation (A I) matching

than. say, flag color (A6) matching?

In the past-as well documented in references 2 and 3-geolocation information matching was almost

soiely emphasized, with relatively little emphasis upon other attributes, except for course-confirming or

course-disconfirming evidence use. However, with the advent of Al techniques, it is becoming clearer that

other attribute information can play critical roles in decision making in general, and correlation in

particular. (For example, see reference 4 for employing fuzzy logic in decisions useful in expert systems.)
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2. THE PACT APPROACH

In the philosophy of the PACT approach, the following three types of information are combined:

observed data (suitably updated), reliability/errors of data, and relative weights of importance in the form

of inference rules. In short, the PACT approach centers around a generalization-in order to include

subjective as well as stochastic attributes-of a conditional form of the well-known "total probability

theorem." (For example, see reference 5, pages 39 and 40):

P(xly) =2, P (xly, z) " P(zly) . (2.1)

zeD

where P is a given probability, x is a parameter of interest, y is observed data, and z is an auxiliary
variable introduced so that P(xly,z) and P(zjy) are known legitimate conditional probability functions of
arguments x and z, respectively.

In a purely probabilistic context, the expansion in equation (2. 1) completely utilizes the three types of

information just noticed: observed data corresponds to variable y, reliability/errors of data correspond to

the condition P(zly), and relati.,e weights of importance correspond to the different values for the

conditional P(xly,z). Indeed, the latter can be thought of as a model for the inference rule connecting y

and z to X. Naturally, a different choice for P(xly,z)-depending upon the meaning of auxiliary variable

z-will produce a different weighting scheme.

Of course, it may be feasible to obtain directly, without recourse to the introduction of auxiliary

variable z, the prior P(x) and the conditional form P(yIx)--especially when the regression model holds

y =g(x) +h(W) (2.2)

for some known (measurement) function g and known objective function h, and where W is a random
variable (or random vector) statistically independent of x, representing measurement/observation error,

also with a known probability function.

In the preceding case, it follows that the conditional probability function for y given x is obtainable

from equation (2.2) as

P(yIx) = P(W = h-' (y - g(x))) • (2.3)

In turn, Bayes' Theorem yields, in place of equation (2.1),

P(xly) = P(Ylx) " P(x)/P(y)
(2.4)

P(Y) = > P(yIx) "P(x) ,

xe L6

letting Do be the (discrete) domain of values of A with P(ylx) evaluated through equation (2.3).

Of course, the Bayes' Theorem form in equation (2.4) is only useful when P(ylx) can be obtained

directly. However, it is often the case-and certainly so for the main application here to correlation-that
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P(ylx) is not readily obtainable due to the great complexity relating x to y, and that the appropriate
introduction of auxiliary variable z will supply the needed link.

Specifically, if x corresponds to correlation and y to jointly observed geolocational and radar
parameters, by letting z be the corresponding true values in place of y, if P(xly,z) = P'xlz) and P(zly) are
known, equation (2.1) is preferred to equation (2.4).

Another issue, mentioned earlier, is the desire to incorporate linguistic-based or subjective informa-
tion with stochastic information. Often, in effect, such information involves a descriptor that does not
represent an ordinary set, but rather a fuzzy set A determined by a corresponding membership function
O(A) : DA -. [0, 1], where for any xc DA, O(A)(x) is interpreted as "the degree to which x belongs to A."
Examples of this include A = "tall," "long," "happy," "cold;" and where attribute domain of values DA
can be a fixed population of people or ships. On the other hand, one can in a sense, reverse the roles of A
and DA by choosing, e.g., A to represent "typical ship" and DA to consist of a set of classifications
{C, .. , Cm } so that the evaluation 0(A) (Cj) means the degree to which Cj belongs to A, i.e., to which a
typical ship (prior) is of C] type. (See, for example, Dubas and Pride [reference 6] for background
information on fuzzy sets.)

Further details and analysis of fuzzy sets representing linguistic descriptions are given in the following
chapter. In any case, the main thrust of PACT in utilizing both linguistic-based and probability
information is, first, to extend the purely probabilistic expansion in equation (2.1) to a fuzzy-set form for
each inference rule used, and second, to combine the resulting posterior descriptions of correlation for
each inference rule used into an overall posterior description.

The chief motivation for the current revision of PACT is to reduce the empirical or ad hoc aspects
relative to the choice of logical operators-especially the use of material implication in fuzzy-set form for
modeling conditioning in inference rules and the combining of inference rules. In addition, a new
upper-bound approximation for PACT will be presented, potentially greatly reducing PACT's relatively
long running times. Before obtaining these results, a fresh discussion is presented motivating
the encompassing use of fuzzy sets relative to information that is in part linguistic-based and, in
part, stochastic.
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3. FUZZY SETS AND PROBABILITY: PRELIMINARIES

Let F:R -" O, 1] be a given function. Then, recall from elementary probability theory that letting

DF I{x:xER &F(x+A)-F(x)>O, for aliA>0} (3.1)

be the support of F, then F is a cumulative probability distribution (cdf) over DF if F satisfies:

(i) F is nondecreasing continuous from the right.

(ii) lirn F(x) =0, lim F(x)-=1 (x - - ,x -+÷ (3.2)

X ADF X41 DF

Note that if DF is finite, say,

DF = {xi, .... xn} with x, < X2 < ... <xn ,(3.3)

xjER,j= 1 ... n, then defining f: DF - 0, 1] by

f(xj)d- F(xj) -F(xj- ) >0, j= 1_ n (3.4)

with the convention

X0  00 , whence F(xo) = 0 , (3.5)

implying

f(xj) = F(x 1 ), (3.6)

so that

0 5f(xj) < I , j=l,. ,n , E f(xj) =1 , (3.7)
j. 1

establishing f as a probability function associated with F. As an interpretation: One and only one outcome
xjf DF can occur at a time, with probability f(xj).

7



Returning to the general case for DF: associated also with F is the nested (or level) random set

S(F, U) = F-[U, 1]1 = ( x : xcR & F(x) > U I (3.8)

where U is any random variable (r.v.) that is uniformly distributed over [0, 1]. Note that one has the basic
one-point coverage relation

Pr (x E S(F, U))= Pr (U < F(x)) (3.9)

= F(x) , all xER.

Indeed, making use of the basic properties of pseudoinverses denoted by ( ) t (see, for example,
Goodman and Ngugen [reference 7], pp. 121-124), one can show, slightly abusing notation, that

S(F, U) = [F t(U), CF] , (3.10)

actually a nested random interval with constant fixed right end point CF , where

CF F-'(1) nfDF (3.11)

and random variable Ft(U) for its left end point, noting r.v.

Ft(U) = inf F-'(U, 11 (3.12)

=inf{x:xeR & U : F(x)}

has precisely cdf being F itselfl
d

Conversely, if V is any r.v. over some DF C R, with cdf F, say, and CF = SUP (DF), then the ranaoon
interval [V, CF] can be naturally identified with F via the one-point coverage relation:

Pr(xiE[V, CF]) =Pr(V ! x) = F(x) (3.13)

for all xcDF.

One can also associate directly with the probability function f for F when DF is finite, say as in

equation (3.7), the random nested set

S(f, U) =f1[U, 11 (3.14)

= {x : xEDF & f(x) > U)

Note, again, the one-point coverage relation

Pr(xcS(f, U)) =f(x), all xe DF, (3.15)
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and most importantly, since f is a probability function (see equation 3.7),

I =2Pr(x.Sf, U)) .(3.16)

The construction, in equations (3.11) through (3.16) are all special cases of the relations between
fuzzy sets and random sets pointed out originally in references 8 and 9; and later in reference 7,
Chapters 3 and 4.

Fuzzy sets and their operators provide a way to represent, relatively simply, numerical uncertainties of
possibly overlapping complex events (references 6 and 7). The following examples and analysis should
provide a good basis for illustrating this point and relating fuzzy sets to probability concepts:

Suppose an adjectival or descriptor attribute A is given with an associated numerical unction
O(A) : DA -" (0, 11. (At times for convenience - when not confusing - we can simplify previous domain

notation.) To begin with, A could represent the abstraction corresponding to any given cdf F:R - [0, 1]
with support DF, so that O(A) =-F. One could label A here as "F-ish" or simply "F," and so on. 00)
frequently does not behave like a cdf or probability function. Indeed, if A is first given as a linguistic
descriptor or adjective relative to some appropriate domain DA and then a suitable associated numerical-
valued function O(A) : DA -* [0, 1] is sought for the interpretation, for each Xf DA:

O(A) (x) =-degree to which x has property A"

=-"membership level of x in fuzzy set A" (3.17)

"_-"possibility of A occurring at x"

Typical examples include the descriptors:

A1 = happy, DA1 = adult males living in Denmark (3.18)

A2 = long, DA2 = [100', 1500'] (3.19)

representing possible ship lengths,

A3 = dark, DA3 = spectrum of colors (3.20)

A4 =close, DA4 =R' (3.21)

representing distance between targets,

As = typical prior target, DA, = {C1, ... Clo} , (3.22)

where Cj represents the jih class of ship, where, in general, the Cj's are overlapping. Note the effective
reversal in As where the domain values play the role of the descriptor and the attribute is a relatively
neutral typical population element.

In a similar vein, one can make a fuzzy set interpretation of cdf's and pf's, noting again the role of the

descriptors being determined by the domain values, rather than by given prior attritubes.

9



Even if in any natural interpretation of an attribute A, O(A) : DA -. [0. 11 is nondecreasing-and
hence formally similar to a cdf-the interpretation of o(A2)(x) can be quite different than if
O(A) represented a cdf. For example, O(A2) has the form of a cdf, and, hence, relative large values of
xEDA, yield large values for O(A 2)(x), as should be, considering the meaning of "long." On the other
hand, one can question how useful is the attribute A6 defined to correspond to cdf O(A6) :R2-- [0, 1] to
describe a target's location. Certainly, for xcR 2 large positive in both components, 0(A6) (x) is close to 1,
but x can be quite far from the mean of the distribution. In this case, the local attribute, i.e., the
discretized probability function corresponding to O(A6), is a more meaningful numerical measure.

10



4. FUZZY SETS AND PROBABILITY: GENERAL CASE

In any case, one is led to the following general random-set interpretation for fuzzy sets extending the
material just covered in Chapter 3.

For any given attribute A with associated possibility or fuzzy set membership function
O(A) : DA - [0, 11, define the associated (unique) nested random set S(A, U) C DA analogous to
equation (3.8) or equation (3.14):

SCA, U:) = O(A)-'IU, 11

(4.1)
= {x :xcDA and U __ O(A)(x)},

U any r.v. uniform [0,11 distributed.

It then follows immediately that for all XEDA, the one-point coverage relation holds

Pr(xeS(A,)) = Pr(U :_ 0(A)(x))
(4.2)

= (A) (x).

When again DA is finite, say {xi, ... xn}, then equation (4.2) can be interpreted also as identifying the
possibility of x occurring relative to A as the probability of the filter class or class of interacting subsets of
DA relative to x, x, occurring, where

x da :xc a • DA} (4.3)

Thus,

0 (A) (x) --Pr(S (A, U ) E x)

- Pr(S(A, U) = a) S(4.4)
ac x

= Pr(Or (a occurs))
dE x

summarizing the fundamental relation between attribute possibility outcomes, or equivalently fuzzy set
membership functien levels, and probabilities of interactive sets.

Note, also, that any typical outcome S(A, U) • DA can be thought of as all elements of S(A, U)
occurring simultaneously.

Note the following three special cases for S(A, U), depending upon the structure of

O(A) : DA -" [0, 1], slightly abusing notation (DA need not be finite):

(i) O(A) nondecreasing (but not necessarily a cdf).

S(A, U) = [O(A)'(U), cA] , (4.5)

where CA is determined by the relation

sup O(A) (x) = O(A) (CA) (4.6)
xEDA
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(ii) O(A) nonincreasing.

Defining A' also over DA via
O(A') d4 1 - O(A) (4,7)

S(A, U)= DA-S(A', 1 -U)

= IdA, ¢(A')I(I - U)]

= [dA,O(A)t(U), (4.8)

where dA is determined by the relation

inf *(A)(x) =O(A)(dA) (4.9)
xe DA

(iii) DA = (Xl .. ,. Xn}

S(A, U) = ,xj :xjcDA & O(A)(xj) a I, (4.10)

noting if

0 S O(A) (xj) < .. < O(,A)(x,,) _5 1 (4.11)

then

Pr(S(A, U) = {xj, xjj..., xn}) - O(A) (xj) - l(A)(xj_,) , (4.12)

fori = 1. ... n. with the convention - using a fictitious x0 and x,,, -

*(A)(xo) = 0, O(A)(xn. 1 ) = 1 , (4.13)

so that

Pr(S(A, U) =0) = 1 - O(A)(xn), "

(4.14)Pr(S (A, U) = {xl,.... xn} ) = Op(A ) (xj)

Next, note that there can be many distinct random-set representations in general of any given fuzzy
set membership function. For example, if O(A) : DA - [0, 11 is such that DA = (xi ... xnl, then the
random set T(A) C DA also represents O(A) where for any subset a C DA

Pr(T(A)=a) d4 tI (A)(x)- , (I-O(A)(x)) (4.15)
xqa XDA...4a
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T(A) is the maximal entsopy reprtsentative, while S(A, U ) has minimal entropy-like properties-in any
case, very different in form (see, for example, reference 7, especially section 5A). Conversely, any ran-
dom-subset S C DA, say, determines a unique one-point coverage equivalent fuzzy st, membership func-
tion, namely

0(A)(x) = Pr(xES), xE.DA, (4.16)

Thus, with the plethora of possible (one-point coverage) random-set representations for a given fuzzy
set, which one(s) should we choose and how does this choice relate this to established fuzzy set logical
operators such as Zadeh's proposed min-or product at times-for intersection, max-or probability sum
(as follows) for union, and 1-( ) for complement, etc.?

In response to the preceding discussion, note that the nested random-set representation for
attributes A referring to cdf's reduce nicely to the natural fixed right-hand constant, left-hand r.v. internal
case as in equations (3.8) through (3.13). For the other extreme cases, such as A corresponding to O(A)
being a nonincreasing membership function or to a legitimate probability function, also naturally
corresponding forms held for the nested random-set representations. (Again, see equations (4.7) through
(4.9) and (3.4) through (3.6).

As a consequence of the above, as well as for ease of interpreting logical operators over fuzzy sets
through ordinary corresponding ones-as will be seen in the next chapter-the nested random-set
representations will be considered from now on as the natural probabilistic interpretation of fuzzy sets.
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5. FUZZY SETS AND PROBABILITY: OPERATOR RELATIONS

Taking the natural nested random set representation of fuzzy sets (see also Goodman [reference 10]
for further justifications in terms of flou sets and extensions of the Negoita-Ralescu representations),
consider the following development, based upon the concept of copulas, i.e., cdf's for n r.v.'s U1, ... U,
each distributed unif-10,11 (see reference 7, section 2.3.6, or Schweizer and Sklar treference 111 for
background).

Roughly speaking, copulas can be considered to be natural generalizations of ordinary two-valued
conjunction. Similar comments are valid for cocopulas-i.e., DeMorgan and related transforms of copulas
representing generalizations of ordinary disjunction. Examples of copulas and cocopulas are (min, max),
(prod, probsum) where

probsum (ti ... tn) d_ 1 G -I (1-tj), tjC [0, 11I, j--l .... n. (5.1)
'=I

Another copula, cocopula pair, among an infinitude of possibilities, for n=2, is (maxbnd, minbnd)
where

maxbnd (tI, t2) = max (tI + 12 - 1, 0) , (5.2)

minbnd (0, t2) = min 01 + 12, 1), (5.3)

for all tjc[O0 111.

Then, denoting generically cop: [0, I]n -- [0, 1] for the (joint-n) cdf of U1, .. , Un, for any attributes Aj
with domain DA., j = 1, .. , n, define conjunction, AI & "" & An, disjunction AIV v , V An and negation
A'J through the corresponding membership functions, where (A1 &" & An):DAI x X DAn " [0, 11
is given by

&(A,. & An)(xi, .. ,Xn) = cop(0(A)(x), .. ,•(An)(xn)) . (5.4)

and where O(AlV • "VAn) :DAI X "" X DAn "` [0,1] is given by

0(A, V V A,,)(x 1 , ... xn) = cocop((A,)(xi), ..., (An(xn))
D _ 1)d cop ((0(Aj)(xj!);jK)(5.5)

ox K c1 (.... n)

and

O(A*(xj)) = 1 - 0(Aj) (xj) (5.6)

for all xjcDA j = 1 ... , n

Sklar's Theorem (reference 11) is compatible with the result that O(AI &" & An)is a legitimate cdf
over DA1, X X ×DA, if each O(Aj) is a cdf over DA CR, j =1 .... n. Conversely, any cdf F over
DAI X DA, , Rn can be expressed as
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F = FI& ""&F, d copo(Fl,.. Fn) ,(5.7)

where Fj is the jth marginal cdf of F, j=l, ... n.

In addition, the basic homomorphic tie-in between &, v, ( ) relative to all fuzzy sets and ordinary

fl. u, ( )' relative to nested random sets can be established:

For all xyJDA., J = 1, .. , n, by the definition of cop

,(Al & & An)(xl, ... , x,n)= Pr((Ul S O(A1)(x1)) & • * & (Un -- O(An)(x1))) (5.8)

= Pr((xiý-S(Ai, U1)) & " & (xn c S(An, Un)))

Hence, when DA- DA,, = D, ior all xeD (equation 5.8) implies

o(Al n " - lAn)x) O¢(Al &" " -& Ad)(x .. , x)
(5.9)

= Pr(xcS(A , Ul) n • • nS(An, Un)) ,

For all x1 E DA., j = 1..., n , by reference 11, the definition of cop and the basic Poincare alternate

sum expansion of probabilities,

*(A V " V An) (xa... -xn) = J _ 1 )card(K)fl Pr(& (U,Kc{ .. n) Pr (&K U j :5 (Aj) (xi)))

Pr( v (Uj S O(A)(xj)))

= Pr((x1,ES(A1, U1)) V V v (Xn1ES (An, Un))) (5.10)

Hence, when DA, DA, = D, for all xcD (equation 5.10) implies

d
O(At U" • UAn)i(x) = O(Al V • • V An)i(X .... x)

=Pr(xES(A , U1 ) U - U S(An, Un)) (5.11)

Finally, it is obvious that for all xj c DA,

qP(Aj (xj)) = I - Pr(xje S(Aj, Uj))

= Pr(xjc DA- 4 S(Aj, Uj))
I

= Pr(xjc S(A1 , 1-U)) . (5.12)

Equations (5.4) through (5.12), together with the previous justification for the use of unconditional

fuzzy sets, logical operators in the form of copulas, cocopulas and 1-(), model linguistic-based attributes

and other logical connections, compatible with probability theory.
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6. CONDITIONAL FUZZY SETS

Finally, consider the modeling of conditional attributes. Reference 10, section 9. shows that if A,, A2

are two given attributes, with any corresponding domains DA,, DA2 , then the conditional attribute
(AIIA2)-read "A1 given A2"-should be characterized for fixed copula, through the membership

function O(AIIA 2) : DA1 X DA2 " [0, 1], where for any xj CDA , j = 1, 2,

O(AI & A2) (x1, x2 )/(A 2) (x 2),

S=provided (A2) (x2) > 0 ,¢(AiI[A2) (xi, x:) -- (6.1)

10,11

provided 0(A2) (x2) = 0 ,

where O(Al & A2) is given in equation (5.8) for n=2. Clearly, equation (6.1) reduces to a version of
ordinary conditional cdf's when O(A1 ) and 0(A 2) are cdf's.

In turn, one can develop an entire calculus of logical operations extending &, v, ( )' -and hence
fl, U, - as well-from the unconditional case to the more general conditional one. This is based on the
calculus of conditional logical operations relative to nonfuzzy or ordinary conditional events. For
background on conditional event algebra, see, for example, the recent summaries, reference 10,
section 6; reference 12, or the forthcoming monograph, reference 13. In brief, if R is a Boolean algebra
of ordinary sets or equivalently unconditioned events or propositions, then for all a, b, c, d c R, the
following extensions of the ordinary Boolean logical operation & (or In), V (or fl), and( )'(or -) hold:

(alb) & (cld) = (abcdla'b V c'd V bd) ,

(alb) V (cld)= (ab V cdlab V cd v bd) , (6.2)

(aib)' = (a'lb)

where for shorthand

abcd = a & b & c & d,
(6.3)

a'b=a' &b ,

and so on.

In turn, as developed in reference 10, section 9, one can use equation (6.2) to determine in a natural
way the further extensions to conditional fuzzy sets.

This is accomplished through use of the nested random-set representation of the conditional fuzzy sets
and their application of equation (6.2). For example, for any attributes Aj with domains DAj, xj f DA!
j-1,2,3,4, with a fixed choice of copula cop, letting
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o0Y(xj) (xjES(Aj. Uj)) = (Uj : 0 (Aj)(xj))

= U'[0, O(Aj) (xj)] E R (boolean)

j=1,2,3,4, one has

0((AIIA2) V (A 3jA 4))(x,-x2 ,x3 ,x 4 )

= Pr((ctl(xj)Ic2(x2)) V (Co(x3)jo 4 (x4))) (6.4)

= Pr(collo)

0ot 10x 1 )Q 2 (X02W) V0 3 (X3 )ak4(X 4) (6.5)

0oyato V (012(X2) a4(X,))

In turn, equation (6.5) can be used to evaluate equation (6.4) fully. (Again, see reference 10, section 9,
for further details.) Of course, one could utilize in place of the above development, a more simplified
approach, where, for example, V as in equations (6.4) and (6.5) is approached the same formally as in the
unconditional case; for example, equation (5.5).

Finally, note that based on equation (6.1), one can show (see reference 10, equations (8.42) and
(8.43)) that if cop is associative and distributive and h : Z - [0, 1] is any auxiliary function so that, using
V to indicate max or sup,

max h(z) = 1 (6.6)
Se Z

Then, for all xcX, yE Y, the analog of equation (2.1) holds, that we call the PACT expansion:

(f(x)sjg(y))= max Vf(x)l,(yz)) - (h(z)lg(y)) (6.7)
ZE Z

where

S(y. z) 4 cop(h(z), g(y)), (6.8)

for allyeY, zeZ
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7. DEVELOPMENT OF MODIFIED PACT: MODIFIERS AND
ATrRIBUTE-MATCHING FUNCTIONS

With all of the preliminaries in place, we can establish the new modified PACT algorithm. In the
former version, a number of ad hoc assumptions were made, including:

(1) combining all inference rules beforehand into one joint rule using an arbitrary choice for
conjunction

(2) identification of conditioning with a fuzzy-set version of material implication

(3) ad hoc forms for matching functions used to construct the inference rules.

In addition, PACT also had the drawback of requiring excessively long-running times due to the required
disjunctive iteration of variables running over the auxiliary attribute domains. (Again, see reference 13 for
further details.)

In brief, the modified version of PACT here addresses (1) by using only one inference rule 0t i) in
equation (6.7) at a time, followed by combining the outputs. In (2), conditioning is assumed to be of the
above form (fj 1), rather than in material implication form. However, later, when an abbreviated version
of PACT is sought, conditioning is replaced by a more expedient form. For (3), a matching function is
considered simply a joint fuzzy-set membership function of the same marginal attribute connected by a
copula. Finally, a simplified substitution and approximation relative to the PACT expansion is shown to
lead to a greatly reduced running-time version of PACT.

Apropos to the fuzzy-set version of equation (1):

Let variable xE [0, 1] represent the true level of overall track association or "correlation" of two given
apparent targets of interest that may or may not actually represent the same target. Let attribute A0
correspond to correlation so that O(Ao) : [0, 1] -- [0, 1] represents its membership function, which may
well be simply the identity idlolj.

Introduce auxiliary attributes and variables that provide potential information about Ao conditioned
on any observed attribute values: A,, A 2 , .... Am. For example, one could have:

A, = geo2 (two-dimensional locations) (7.1)

with O(A,) : DA, -. [0, 1], where DA, F R2 is some finite domain with O(A,) a suitable discretized-
truncated version of Gaussian distribution N 2 (u,, Al),muE R2 mean and A,, 2 by 2 positive definite covari-
ance matrix of error, so that typically

*(A,)(zl) =A,,exp -A1 2(z4 -A,)TA-I(Zl -,41), zIEDA, (7.2)

for some positive scaling factors -111,A12; Al : 1. Or, one could have

A2 = color (dominant flag color of enemy) (7.3)
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with associated membership function given numerically as

Op(A2) (Z2) 0 .5L
II (7.4)

01 I I S

YEL WH OR BR BL

In general, O(Ai) :DA. * 10, 1] is assumed known from prior information with Di some domain of
values for attribute A,. 1=1, ... m.

Next, suppose a range of modifiers has been established with associated membership functions, so that
modifier j, modj has associated membership function 0(modj) : [0, 1] -- [0, 1]. A simple collection of
such modifiers would correspond to the linguistic and numerical interpretation as follows:

very high • mod, 0 #(modi)(t) = ta,, te [0,1]

high - mod2  0 •(mod 2) () = ta2, t (0, 1]

moderately high • mod3  0-• #(mod 3)(t) = ta 3, tf [0, 1]

medium 4 mod 4  0 4(mod4) () = ta4, tE 10, 1] (7.5)

low medium 4 mods 0 l(mods)(t) = tas, t4E [0, 1]

low 4-1 mod6  0 O(mod 6)(t) = ta6, if [0, 11

very low E r mod 7  0' O(mod7)(t) = ta7, if [0, 11

where for suitably chosen values the exponents order as

1 >02 >03 >CK4 1 >c>6 >a > 0 . (7.6)

Note also the typical interpretations

not high - 1 - mod2 -' 1 -12 , (7.7)

etc.

Next, define the basic matching attributes match (Ai) as follows:
Pick a copula cop, : 10, 112 _ [0, 11 that appears most appropriate and define

0(match(A1)) (Z1,i, Z1.2) = copi (¢(Ai) (z 00 0) 0 i(Ai) (21.2)) (7.8)

for all z21EDA, j = 1. 2;i = 1, ... m. The purpose here is to describe the joint distributional value of zi,.i
and Zi,2, not just the "distance" (actual, statistical, or possibilistic), and it appears equation (7.8) captures
this appropriately.
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For example, returning to equation (7.1), note that (omitting subscript commas when unambiguous)
for all z 1 1 ,z 1 2 eD, ( R2, by use of Schweizer's inequality and eigenvalue properties, it easily follows that
equation (7.2) yields for cop1 = prod, for example,

O(match(geo)) (z j, zI2) d (geo( 1)) * (eo) (zD))

(7.9)

= rel(z1 ,z2) " abs(zl,:2)

where

rel(z-22) II

(7.10)

a b s (z 1, z 2) = e -21 2 '(z 1- 1z2 )T A "I ( z l-Z 2z )

2:ep A 11 "Z1-#1 2 C * °'Z12 -AZl[ (7.11)
-exP[-I2 maxeig(AI) mineig(A1 )

for all

ýzII -::12 CO • (7.12)

Hence

( lim. (abs(z 1 ,z2 )) 1 0
212 -A 0- + (7.13)
I Z1I-Z 12 ]S EI<

all

SZ12 -Al I > (maxeig(A1 )/mineig(A1 ) • co (7.14)

Thus,

lim 0(match(geo) (z11, z12)) = 0,
Z1 *-01 F' + 00 (7.15)
]zI•z I s - e : o)

showing zli and z12 being close to each other is not enough for matching relative to the parent attribute.

Note the following two important opposite limiting deterministic subcases:

(i) A, -- 0, i.e., maxeig (A1) - 0. This is equivalent to

O(geo2) (z) = 6Z,,, (Kionecker delta) (7.16)
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for all ze R2, in which case, for any copula

0(match(geo2 )) (z1 , z2 ) = 1, '61 2,

J 1•, if z, = z2 =,"I (7.17)

L 0, if Z1, Z2 are otherwise

for all z1, z2 c R2 .

This case is not satisfactory, since the above indicates that one knows absolutely that, from a
prior viewpoint, the target was at p and nowhere elsel

(ii) A1 -• , 0 i.e., mineig (A,) - -.

This is equivalent to, regardless of copula chosen,

0(match(geo2 )) (z1 , z 2 ) = cop1 (1, 1) = 1 , (7.18)

meaning that for all Z1,z 2 in the truncated region of R2, the basic matching level is indifferent,
i.e., all are equally likelyl

Similarly, for A2 in equation (7.3) with membership function described in equation (7.4), while
BR(own) and BL(ack) are colors "close to" each other, their relations to A2 are both seen to be small and
hence BR and BL should not have a good match. Indeed, the maximal possible copula min shows

0(match(A2))(BR,BL) = min(0.2,0.1)= 0.1 , (7.19)

etc.

In turn, the conditional basic matching attribute membership functions are of the form, for any
observed data set

d dm

(,Yi I -.Yi,2)iz-1.... 'E Y dX (DAi X DAi) , (7.20)
i=1

yiE DA1 , 1=1,2; i= 1, ... m .

0 (match (,4i)) (zijyi)

= 0(match(Ai)) (zj, Zi2IYi1, Yi2) (7.21)

= cop!( (AO) (ZOilYiM), 00(A) (z12lYi2)) .

If one knows the antecedent function g in equation (6.7)--not often so in practice-O(Ai) (Zijlyij) can be
obtained as a conditional fuzzy-set membership function. On the other hand, the function may be obtain-
able directly from experts in tabular form O(Aj) (zijlyij) versus zij and Ysj. For simplicity, one could assume
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OI(A,)(zijjyij) =ViQ(P(A,)(z1i);yij) , (7.22)

for some function /Pi of two variables obtained empirically. (If V'i(t,s) = copi(t, i(s))/ i(s), essLntially
equation (6.1) is obtained back.)
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8. DEVELOPMENT OF MODIFIED PACT: INTERENCE
RULES AND ERRORS

Next, suppose a collection of inference rules has been culled from experts. connecting correlation
variable x indirectly with observed data y, through auxiliary variables z: Specifically, let the collection of
corresponding conditional membership functions be denoted as, for any possible true values

4(ZZi)i1_.n C 4 X (DAi X DAi )

zij EDAP, j=, 2; i =1, .. , m,

{rule,(x, z) : k = 1, ... r} , is defined by

drulek = rulek(xIz) = (consk(x)Iantk(z)) (8.2)

d
confs(X) d (modjk.o)(0(Ao)(x)), xE [0, 11 (8.3)

and

antk(z) = combk(&, or, not) (mk(z)) , (8.4)

where

mk (z) = (O(modjik.) [J(match(Ai)) (z) J) ' (8.5)

zi =(zil,Zi), i= 1,.., m . (8.6)

Here, comb(&, or, not) is some well-defined logical combination of a copula cop(k)[0, 1]2 - 10, 11,
cocopula cocop(k)[0, 1]1 -2 [0, 11 , and negation I - ( ) [0, 11 -- [0, 11)applied to the modifications
modjk.j of matches. Also, depending on k, k = 1, ., r,

jA,j (1, .. , 7), i=0, 0 1....m , (8.7)

and index set Ak of attributes satisfies

0 P A C (1, ... m} . (8.8)
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For example, one might have the following three rules, given also in symbolic exponential forms:

rule, "If A, matches very high, but A2 matches low,

then correlation level is moderately high" (8.9)

- (AoIAI &

where

J1 ={1,2}; JIo= 3; ji =1; 112=6, (8.10)

rule2 • "If A, does not match high, or if A3

matches moderately high then correlation
(8.11)

level is low medium"
' (Aol (I1-A,'1 or A•3)

where

J2 ={1,3}; J20 =5; 21 = 1; J23 =3 ; (8.12)

rule 3 *-4 "If A, matches high and A2 matches

mediumly and A3 matches very low,
(8.13)

then correlation level is low"

S(41PA & Q! 07

where

J3 = {1, 2, 3}; i30= 6 ; 131=2; j32=4; j33=7. (8.14)

The kth inference rule at values x and z states basically 'if the logical combination of modifiers of
matches antk(z) holds, then, the correlation level cons*(x) holds" or equivalently "the degree of
compatibility of (x,z) relative to the conditional form (consktantA).

Finally, with all of the above established, equation (6.7) can be utilized as follows: For each inference
rule k, k= 1 ... r, let

f(x) d consk(x) (8.15)

as in equation (8.3);

(y, z) d antk(z) (8.16)

26



as in equations (8.4) through (8.6), and let

(h(z)lg(y)) d ant*(zly) d0(antk(z)Iy)

d= antk (z) (with z replaced by zly) (8.17)

d
= combk(&, or, not) (mk(zIy)) ,

where

mk (zly) = (O(modJk.i) [O(match(Ai) (zilyi) I)i,jk (8.18)

a conditional error form for the kth inference rule antecedent.

Substituting equations (8.15) through (8.18) into equation (6.7), using equation (8.2), yields for all
xe [0, 11, the kth posterior form

consk(x~y)d(cons.(x)jy) = max (rulek(xIz) - antk(zIy)) (8.19)zeD

where zeD means (ZiI,Zi2EDAi i = 1, ... m)

If the simplifying form in equation (7.22) is assumed, then 'equation (8.19) also simplifies, by
substituting

tijd (Ai)(zj), j 1,2; i-- 1 ... , m, (8.20)

and letting

d(8.21)

One obtains a reasonable upper-bound approximation (since range (O(Ai)) C t0, 1] in general):

consk(x[y) : consk(xlY)o

d max ((consk(x)I01k(t)) "CV(J1(_t,Y))) (8.22)
It 10, 1]2M

where

ct(O = combk (&, or, not)(ilktQ.)) , (8.23)

17k = (¢(modJk. d)cop'(t" , t'2)1)i jk . (8.24)

opk(t, y)) = combk(&, or, not) (vpk(, y)) , (8.25)

?Pk_,y) = ( (modjki)[copi(Wi (tiI, Yi), VPi(ti 2,Ya2))J)i., (8.26)
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In turn, the r posterior forms consk(Xjy), k = 1, ... r, must be combined into one overall posterior.

By the dia8onalization technique (reference 14), one can naturally combine the separate posteriors in

equation 8.19 as the solution, cons(Xjy), of the equation

cop(cons(xly), cons(diagly)) = cons0 (xly) , (8.27)

where

conso(xly) _cop((consW(x)jy))k~j,...),

cons(diagly) = max (conso(xly)) (8.28)
xF 10. I]
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9. SUMMARY OF INPUTS AND COMPUTATIONS

For both the full-modified PACT form in equation (8.19) and the shortened upper-bound form in
equation (8.22), the following basic input steps are required:

1. Determine the master list of auxiliary attributes A1, ... Am and obtain observed/updated/
reported data Yij c DA, for target j relative to Ai, j = 1, 2, i = 1, .. , m.

2. Obtain the table of appropriate values of exponents a,, I = 1, .. , 7 in equations (7.5) and
(7.7) for interpreting modifiers mod,, I = 1, .. , 7.

3. Provide the master list of inference rules rule,, ... , ruler from experts in syntactic form. The
syntactic structure is given as

rulek *-: (aik ; combk(&, or, not)((ajk• Jk

conseq. antecedent

exponent exponent combination

for some 0 J {..m},k = 1, .., r.

If, in particular, combk(&W or, not) is strictly COP(k), then one can write

rulek *- (aik,o; (ajk.)idjk).

4. Determine for each attribute Ai , the membership function O(Ai) : DAi "4[ 0, 1], i = 0,
1, 2 .. m.

5. Determine the appropriate forms for: copula copi, corresponding to match (Ai), i=1, .. , m;

copula copk and cocopula cocopk for rulek, k = 1, .. , r, and copula cop for use in combining
the PACT outputs for each inference rule.

For only the full-modified PACT form in equation (8.19), the following input is required:

6. Determine, directly via experts, for each attribute Ai, the conditional membership function
O(Ai)Q "yj) :DAi-[ 0,11, for all yi DA., i = 1, ... M

For only the upper-bound form for PACT in equation (8.22), the following input is needed:

7, Determine, directly via experts, for each attribute Ai, the function 'i relating O(Ai) (zij) and
Yij in the conditional form given in equation (7.22), i=l, .., m. Thus, utilizing O(Ai) and
observation Yij, one wishes to obtain the transfer relation

0 (A i) (zij) -' pi(0(A 1) (zij). yij)

when yij is observed, j=1,2; i=1, ... m.

For the full-modified PACT form in equation (8.19), table 9-1 provides a summary of the required
computations, with figure 9-1 giving the corresponding full flowcharts.
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Table 9-1. Summary of computations determining PACT relative to
the k'h given inference rule, in its full-modified form.

Compute for all zi 1 zJ24E DA.
and all Xc [ 0, 1], with yi , yi f DA . given, i = 1,.., m

O(match(Aj)) (Zj) = copi(r/(Ai) (zjj), ip(Ai) (zi2)) ,(7.8)

Mk(Z) = (O(Modik.) I~mthA)( 1 ] 1 j,(8.5)

antk (z) =combk (&,or, not) (ink (W)) (8.4)

conSk(X) = O(modik,) (O(Ao) (x)) ,(8.3)

rulek(XIZ) = (conSk(X)Iantk(Z)) (8.2)

= Cop(kt)(COnSk(X, antk(z))/antk(Z) (6.1)

provided antk(z) > 0.-

O(match(A1 )) (zuly5) = COPi(O(Ai) (Z~1IlYil),(Ai) (ZailYi2)) ,(7.21)

Mk (ZlY) = (0(modik ) [O(match(Aj) (zIyj)] I k (8.18)

antk(zly) = combk(&, or, not) (Mk(ZlY)) ,(8.17)

consk (X JY) =max (rulek (XlZ) -antk (ZyIM - (8.19)
ze-D
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BEGIN STEP 1:

DETERMINE Al .., Am AND

OBSERVE DATA yq DA,, j=i, 2, i= 1 .. , m

STEP 2: STEP 3: STEP 4. STEP 5: STEP 6:
DETERMINE CHOOSE DETERMINE PICK DETERMINE
TABLE OF MASTER LIST MEMBERSHIP copi FOR CONDITIONAL
EXPONENTS OF INFERENCE FUNCTION match(Ai); MEMBERSHIP
ct, FOR RULES rulek , O(Ai): DAj--[0, 11 cop(k), FUNCTION
S(Modt) k = 1 .., r i= 0, 1 .. ,m COCOP(k) FOR O(Ai)(" Iyi)

rulek DAi tO0 1],
i = 1 .. ,. m

PICK IN
rulek

FQ (7.8):
COMPUTE

got.- 0(match(Ai)(zi),
EQ (8.4), (8.3): ALL zi e DA X DAi.
COMPUTE FOR ALL x c [0, 1] =_ .M
zfD,
antk(z), conSl(x) EQ (7.2):) t x 

COMPUTE-- • •- _• 0(match (Ai) (zi lYi) ,

ALL zicDAi X DAiSEQ (8.2), (6.1): I EQ (8.17): i=1 ...

COMPUTE FOR ALL x c [0. 1] I COMPUTE FOR
zeD, ALL zc D,
rule,(x/z) = (consk(x)jantk(z)) [ antk(zly)

i = 1 .. ,

EQ (8.19):

COMPUTE FOR ALL xE 10, 11
consk (xly)

Figure 9-1. Flowchart of computations for determining full-modified
PACT form relative to the kfh inference rule.
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For the shortened upper-bound form for PACT in equation (8.22), table 9-2 provides a summary of
the required computations, with figure 9-2 giving the corresponding full flowcharts.

Table 9-2. Summary of computations determining the shortened
upper-bound form for the kth given inference rule.

Compute for all tII,tI2,xC[0, 1], i= 1, ..- m

nk (I = (O(modJk i)[cop,(til, tjz)I)iJk, (8.24)

et() = combk(&, or, not) (nk(O) , (8.23)

consk(x) = o(modjko) (O(Ao) (x)) , (8.3)

(consk (x) k k (t)) = cop (k) (consk (x), oc (t))/a k (t) , (6.1)

provided k (t) > 0,

'Pk(t_,Y) = (*(modjtk) [cop1('P'(t1 , yl), Vti(ti2 , Yi2))])ik (8.26)

o* (V._Q. y)) = combk (&, or, not) (Pk (t, y)) , (8.25)

consk(XJy)o = max (consk(x)0 kW)) - k (Pk(btY))) (8.22)
IO. tI2m 

(8.2

For both the full-modified and shortened versions of PACT, table 9-3 provides a summary of the
required computations needed to combine the separate outputs of PACT relative to each inference rule.

Table 9-3. Summary of computations determining the shortened
upper-bound form for each inference rule.

Compute for all xE [0, 1],yeD given (i.e., Yi,IYi,Z eDA, given, i = 1 ... m)

conso(xIy) =cop((consk(xly))k.... ,r) (8.28)

cons(diagly) = max (conso(xly)) (8.29)
XC (0, ]

Solve for cons(xly)

cop(cons(xly), cons(diagly)) = conso(xjy) . (8.27)
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BEGIN STEP 1:

DETERMINE Al,..,Am

STEP 2: STEP 3: STEP 5: STEP 4:

DETERMINE CHOOSE PICK COPULA DETERMINE

TABLE OF MASTER LIST copi FOR MEMBERSHIP

EXPONENTS OF INFERENCE match(Ai); FUNCTION
cit FOR RULES rulek , COp(k), O(Ai) : DA. -- [0, 1]

(Mod') k= 1..., eCOCP(OP) FOR i = 0, 1,..,m

e 

STEP 7:

(SEE EQ (7.22))

EQ (8.3), (8.23): DETERMINE

COMPUTE FOR ALL x e 10, 1] 0(Ai)(zjjyij)

kt t() ' COflSk(X) , = pi(0(Ai)(zij) , i(Yij))

ALL tE[0, 11 2m i ,=1,.., m

EQ (8.26):
EQ (6.1): COLLECT
COMPUTE FOR ALL xe [0, 1 Q(consk(x)4• k@O) ,),

tk [0, 1]21

EQ (8.25):
COMPUTE

EQ (8.22): 01k k(Vk(QL_ Y)),
COMPUTE FOR ALL

(conskW)lY)o te [0, 11],

Figure 9-2. Flowchart of computations for determining shortened upper-
bound version of PACT relative to the kth inference rule.
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10. AN ILLUSTRATIVE EXAMPLE

m = 3 auxiliary attributes: (10.1)

A, = geo2 , A2 = color, A3 = radar2 , (10.2)

Modifier exponents: (10.3)

cxi=4, 02 =3, Ck3 =2, C4=1, t"=-0.75, q6 =0.5, oi =0.25.

copi = prod, cocopi = probsum, i = 1, 2, 3
(10.4)

cop =min, 0(not) 1 -().

r = 3 inference rules: rule,, rule2 , rule 3, as given in equations (8.9) through (8.14), with logical

operators

COP(1) = COP(3) - prod, cop(2) = min . (10.5)

For Aj, DAi- R2 , j = 1, 3, with

pj c R2 , Aj 2 by 2 positive definite matrix,
(10.6)

;./.1,•i,2 > 0 all fixed ,

qb(Aj (, j) = Ajie "azf) T."zi (z .-#

For all zj c R2 , j-1,3 ;

For A2 , DA2 = {YEL, OR, BL, WH, BR} with

0(A 2) : DA2  t0, 11 given by (10.7)

0(A2 )(YEL) =0.6, O(A2)(OR) = 0.5, O(A 2)(BL) - 0.1

O(A 2(WH) = 0.9, 0(A 2)(BR) = 0.2.

To determine vpi (equation 7.22) for i=1,3:

First, recall the following (see, for example, Anderson, reference 15, chapter 1):

Let random variables z, k, by 1, y, k2 by 1, be jointly distributed Nkk 2 (JA, A). where

A= (_ j9==), (10.8)

p. k, + k2 by 1, with pi, ki by 1 constant (mean), A, k, + k2 by k, + k2 positive definite with Ai, ki by ki

positive definite and A12 , k, by k2 constants, j=1,2. Then, the conditional random variable (zly) is distrib-

uted Nft,(E(zJy), Cov(zly)), where
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E(zly) =p1 + A 12 " A2' " (Y-P2) , (10.9)

Cov (z ly) = A, - A1 2A2'AT . (10.10)

Next, suppose the simple additive linear regression relation holds

y=z=w , (10.11)

where z and w are statistically independent with z distributed Nko(#l, A,) (A, pos. deL.) and w distributed
Nko( s3, A3) (A 3 pos. def.).

Then (4) is jointly distributed and equations (10.8) through (10.10) hold, where now

A1 2 =A 1 , A2 =A,+A 3 , (10.12)

02 =#1 +03 ,(10.13)

whence

E(zly) = ul +A,(A, +A 3)-1 (y-Ul -,3) , (10.14)

Cov(zjy) = A, - A(AI +A 3)-'A = (All +A31 )-. (10.15)

It follows that for the normalized version of Gaussian distributions, letting 11 = A12 = I in equation 7.2,

one has for its possibility/probability function counterpart

P(zjy) = e - R 2 CR 2 , (10.16)

where by expanding

a(z'y) Y(z - E(zly))rcov-'(zly)(z - E(zly)) = (z -#,)T" (All + A3')-l (z-,a,)

+((Y -Al,-03,)T' e. R -(Y-Pl-U)) -2S,

where

R a (A1 +A 3)'A 1 (A;' +A3')AI(A 1 +A 3)-
1

= A31 (A + A;3)') . (Al1 + A;') (A' + A3')-' A;i

AV • (All + A3)"-1 - AV, (10.18)
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and

S (Y-0A-l- , 3 )T. (A,+A 3)"' A1 " (Ali+A)3 (z-,ul)

(Y ( -JUI-,3)7 " (A, +A3)-'" (A, + A3) " AV1 (z -#I)
(10.19)

=(Y -- JU' -,U3)T" A31 (z (-•

1
=T(y- ) ". " 0(z) y(z)

where

6 (Z) AA3 2. (Z-i) (10.20)

Y(z) -9 43 2 . (z- _ 1)j (iO.21)

=((z- I)TA3I(z-tI))2.

Note that by its very definition,

0I (z) Hm 1, all z /Aul . (10.22)

Next, make the conjugate-like assumption that

A, = ic • A 3 , (10.23)

for some real positive constant K to be determined.

Denote the prior function for z as

P-pl)) =( -l e -k-or• z p
P(z) =e4 i ,z f R (10.24)

corresponding to the normalized version of z being distributed Nko(u, A,) as above. We wish to solve for
P(zly) in terms of P(z) and y- and hence, ý la equation 7.22 - determine the most appropriate function
'pi (and gi):

Leaving 0(z) alone temporarily, clearly applying equation (10.23) to equation (10.21) yields
1 1

7(z) = K" ((z -/Ai)rAI'(z -,))2
(10.25)

=
1 . (- 2logP(z))T.

Using equation (10.23), equation (10.18) becomes

R = (c/IK + 1)) • Aj1 = (Kc2/(c + 1)) ' Al' (10.26)
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and

A-l'+A3 = (1 +K¢)*All ,(10.27)

from which

(z -p 1)T(Al + A3')(z -A,1)

= (1+c)(z -,)TAi1(z -/,I,

whence

e-<z-' )T1(^.^.t 1 ) = (P(z))'". (10.28)

Next, replacing O(z) by the approximating constant

Oo d40(z), with z replaced by E(y) =/zl +0 3 , (10.29)

yields

o- (1/(JTA/p3)-) 3 A /3 e R kR (10.30)

Then, gathering together equations (10.25) through (10.30) shows that under the assumptions in
equations (10.23) and (10.29), by substitution into equation (10.17), equation (10.16) becomes

P(zOy) P(P(z),y)

d (10.31)
=A(y) B(P(z)) • C(P(z),y)

where

d

A(y) =e- 2'('(-''•^Iy'-3 (10.32)

B(P(z)) d= p(z)l÷ , (10.33)

C(P (z), y) = e {(Y-Pl -P3)TT A3 o'0-"T(-21.sP(Z))T) .(I10.34)

Main Anolication: Let ko = 2, P(z) = O(Aj)(zj), j =1, 3
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11. SUMMARY AND CONCLUSIONS

This technical document is a followup to the basic development of the PACT algorithm for combining
linguistic-based and probabilistic information in track-data association or correlation. While the same
spirit of PACT is followed (see reference 1 for background), a number of modifications are made in order
to reduce the nonsystematic or ad hoc aspects. Those include: modeling of implication in PACT's
inference rules by using conditional fuzzy sets or their appropriate approximations, rather than by
fuzzification of material implication, as in the previous PACT form; utilization of one inference rule at a
time to obtain the basic PACT posterior form for correlation, followed by a combining procedure
(diagonalization [reference 14]), making use, when feasible, of a fuzzy-set extension of the author's
previously established conditional-event algebra (r-eferctice 13); choosing copulas (rather than possible
noncopula t-norms as in the previous version of PACT/and cocopulas for all logical connectors, based
upon random-set considerations, outlined in Chapter 5).

Finally, a new shortened upper-bound approximation to the basic PACT output is exhibited, replacing
the iterated disjunction operation over all auxiliary attribute domains by the more standardized domain of
the unit interval, appropriately replicated. Based on the summary of inputs and computations (Chapter 9)
for both the full-modified version of PACT and the shortened upper-bound one, it follows readily by
inspection (especially of tables 9-1 and 9-2) that

running time for shortened version of PACT
running time for full modified version of PACT

(m(n+ 1)' •2 (11.1)

I.in card (DA.))

where, as usual, m is the number of attributes, card(DA.) (assuming all attribute domains are finite or
made finite) is the cardinality of DA., i = 1, .. , m, and, finally, n+I is the number of elements in
{0,-!,-!. .. ,. ---i, 1} , the n' discretized version of unit interval [0,1].

Naturally, a tradeoff exists between the running time of the shortened version of PACT for the nth

discretized version of [0,1] versus implementational fidelity versus accuracy relative to the full-modified
version of PACT. Future numerical experiments will hopefully address this issue. Such experiments also
are planned for testing the robustness and improvement in accuracy for the new versions of PACT relative
to use-or lack of use-of linguistic-based attributes, for fixed geolocation and other statistical attribute
intormation.
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